Abstract
A new electrochemical sensor for H2O2 was constructed by depositing copper doped CuO nanosheets on a glassy carbon electrode (GCE). The morphology and composition of the modified electrode were characterized via scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The electrochemical properties of the electrode were studied using cyclic voltammetry and electrochemical impedance spectroscopy. The catalytic performance of the sensor was studied in 100 mM NaOH solution via differential pulse voltammetry and revealed the sensor to display significantly improved electrocatalytic activity with respect to the analysis of the H2O2 in comparison to a plain GCE or a GCE modified with copper only. The response to H2O2 at a working voltage of −0.46 V (vs. Ag/AgCl) is linear in the 0.003 – 8 mM concentration range, and the detection limit is 0.21 mM (at an S/N ratio of 3). Satisfactory results were obtained in the analysis of tap, rain and river waters spiked with H2O2. The analytical performance of this electrode compares favorably to the results obtained with other commonly used techniques for analysis of H2O2.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.