Abstract

The MgNi26 alloy was prepared by three different methods of gravity casting (GC), mechanical alloying (MA) and rapid solidification (RS). All samples were electrochemically hydrided in a 6 mol/L KOH solution at 80 °C for 240 min. The structures and phase compositions of the alloys were studied using optical microscopy and scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. A temperature-programmed desorption technique was used to measure the absorbed hydrogen and study the dehydriding process. The content of hydrogen absorbed by the MgNi26-MA (approximately 1.3%, mass fraction) was 30 times higher than that of the MgNi26-GC. The MgNi26-RS sample absorbed only 0.1% of hydrogen. The lowest temperature for hydrogen evolution was exhibited by the MgNi26-MA. Compared with pure commercial MgH2, the decomposition temperature was reduced by more than 200 °C. The favourable phase and structural composition of the MgNi26-MA sample were the reasons for the best hydriding and dehydriding properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call