Abstract

An electrolytic hydride generation system for determination of another hydride forming element, cadmium, by catholyte variation electrochemical hydride generation (EcHG) atomic absorption spectrometry is described. A laboratory-made electrolytic cell with lead–tin alloy as cathode material is designed as electrolytic generator of molecular hydride. The influences of several parameters on the analytical signal have been evaluated using a Plackett–Burman experimental design. The significant parameters such as cathode surface area, electrolytic current, carrier gas flow rate and catholyte concentration have been optimized using univariate method. The analytical figures of merit of procedure developed were determined. The calibration curve was linear up to 20 ng ml −1of cadmium. The concentration detection limit (3 σ, n = 8) of 0.2 ng ml −1 and repeatability (relative standard deviation, n = 7) of 3.1% were achieved at 10.0 ng ml −1. It was shown that interferences from major constituents at high concentrations were significant. The accuracy of method was verified using a real sample (spiked tap water) by standard addition calibration technique. Recovery of 104% was achieved for Cd in the spiked tap water sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.