Abstract

The electrochemical injection of holes into the valence band of mercaptopropionic acid stabilised CdTe quantum dots in aqueous solution was investigated employing a glassy carbon rotating disc electrode. Analysis of the first exciton peak and the electrochemical responses as a function of the particle size was performed within the framework of the effective mass approximation and tight-binding models. It is demonstrated that the energy of the quantum dot band edges can be predicted from capacitance data of bulk semiconductor electrodes modified by the same stabilising groups as on the dots. In this paper we show that the thiol binding shifts the band edges of the CdTe particles by approximately 0.7 eV with respect to the theoretical value in the absence of stabilising groups. The results also revealed a significant dependence of the hole-injection rate on the electrochemical potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.