Abstract

The monitoring of heparin and its derivatives in blood samples is important for the safe usage of these anticoagulants and antithrombotics in many medical procedures. Such an analytical task is, however, highly challenging due to their low therapeutic levels in the complex blood matrix, and it still relies on classical, indirect, clot-based assays. Here we review recent progress in the direct electrochemical sensing of heparin and its analogs at liquid/liquid interfaces and polymeric membranes. This progress has been made by utilizing the principle of electrochemical ion transfer at the interface between two immiscible electrolyte solutions (ITIES) to voltammetrically drive the interfacial transfer of polyanionic heparin and monitoring the resulting ionic current as a direct measure of heparin concentration. The sensitivity, selectivity, and reproducibility of the ion-transfer voltammetry of heparin are dramatically enhanced compared to those of traditional potentiometry. This voltammetric principle was successfully applied for the detection of heparin in undiluted blood samples, and was used to develop highly sensitive ion-selective electrodes based on thin polymeric membranes that are intended for analytical applications beyond heparin detection. The mechanism of heparin recognition and transfer at liquid/liquid interfaces was assessed quantitatively via sophisticated micropipet techniques, which aided the development of a powerful ionophore that can extract large heparin molecules into nonpolar organic media. Moreover, the reversible potentiometric detection of a lethal heparin-like contaminant in commercial heparin preparations was achieved through the use of a PVC membrane doped with methyltridodecylammonium chloride, which enables charge density dependent polyanion selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.