Abstract

A template free, single-step process is developed for fabrication two-dimensional tin nano-platelets by electrochemical deposition in the presence of Triton X100 (TX100). Electrochemical studies combined with structural characterization revealed that during electrodeposition, TX100 molecules adsorb preferentially on {022} planes of Sn and highly anisotropic growth promotes in [200] direction which results in the formation of platelet morphology. The deposited platelets exhibit a high aspect ratio of 30 (width to thickness) and thickness of 25±5nm that uniformly covered the substrate with a high platelet density of 9×108cm−2. The electrochemical performance of nano-platelets for lithium storage was studied in detail and compared with other morphologies of tin. Tin nano-platelets exhibited high reversible capacity and excellent cycling performance, the capacity was maintained at 820mAhg−1 for 100 cycles and more, far superior to the other structures. Excellent rate capability was also observed for nano-platelets up to 5 C, with the ability to be operated at 20 C without damage. The superior electrochemical performance of tin platelets is mainly attributed to its two-dimensional structure that efficiently distributes strain, allowing high mechanical stability even after 100 cycles, as confirmed by Scanning Electron Microscopy (SEM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.