Abstract

Two gold nanoparticles-based genomagnetic sensors designs for detection of DNA hybridization are described. Both assays are based on a magnetically induced direct electrochemical detection of gold tags on magnetic graphite-epoxy composite electrodes. The first design is a two strands assay format that consists of the hybridization between a capture DNA strand which is linked with paramagnetic beads and another DNA strand related to BRCA1 breast cancer gene used as a target which is coupled with streptavidin-gold nanoparticles. The second genomagnetic sensor design is a sandwich assay format with more application possibilities. A cystic fibrosis related DNA strand is used as a target and sandwiched between two complementary DNA probes: the first one linked with paramagnetic beads and a second one modified with gold nanoparticles via biotin–streptavidin complexation reactions. The electrochemical detection of gold nanoparticles by differential pulse voltammetry was performed in both cases. The developed genomagnetic sensors provide a reliable discrimination against noncomplementary DNA as well against one and three-base mismatches. Optimization parameters affecting the hybridization and analytical performance of the developed genosensors are shown for genomagnetic assays of DNA sequences related with the breast cancer and cystic fibrosis genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.