Abstract

Following the TWA 800 flight disaster in 1996 which was attributed to an explosion in the fuel tank, inerting of the ullage (air volume above the fuel in the tank) has gained prominence. Fuel tank inerting is the process of reducing the flammability of the ullage by supplying it with an inert gas like nitrogen. Current inerting techniques are expensive, consume large amounts of energy, and fail prematurely. Here, we propose a novel in-flight electrochemical gas separation and inerting system (EGSIS) to produce and supply nitrogen-enriched air (NEA). EGSIS combines a polymer electrolyte membrane (PEM) fuel cell cathode with a PEM electrolyzer anode to generate humidified NEA as the cathode output which can be dehumidified and supplied directly to the fuel tank. The required rate of NEA varies during a typical flight and a major advantage of EGSIS is that the rate of NEA generation can be conveniently controlled by varying the voltage applied to the system. Here, we report on the performance of a single-cell EGSIS apparatus and evaluate its suitability for aircraft fuel tank inerting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.