Abstract

ABSTRACTChemical modification of graphene web has attracted strong interest in engineering a band gap in graphene and in altering its magnetic and solubility properties. Electrochemical methods to functionalize graphene have emerged as attractive protocols to covalently modify graphene. Kolbe reaction, which involves the electrochemical oxidation of arylacetates (generation of α-naphthylmethyl radicals, in our present case), allows reversible grafting of radicals to graphene surface; the electro-erasing of the functional groups leads to graphene at its nearly pristine state. The surface coverage can be controlled from densely-packed (ideal as organic dielectrics) to sparsely functionalized surface (ideal for introducing reasonable band gap in graphene) with well-ordered structural patterning of the functional groups on EG surface by fine adjustment of electrochemical conditions. Such a control of the layer structure and packing of the functional groups over the graphene surface is an essential issue in the development of graphene chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.