Abstract

Alkanethiol self-assembled monolayers (SAMs) have been used in electrochemical microfabrication processes. The reductive desorption potential of alkanethiol SAMs, Edes, can be comparable to, greater than, or less than the metal reduction potential during electrodeposition, Emet. As a result, the SAM layer can passivate the surface or desorb simultaneously with metal deposition. We show that these electrochemical traits can be combined with a rastering microjet electrode to pattern SAMs directly and create patterned metal films without lithography steps. For the case of copper deposition on 1-octanethiol (OT)- and 1-dodecanethiol (DT)-coated substrates, Edes is significantly negative of Emet, resulting in high-resolution metal patterns with poor nucleation and poor adhesion to the substrate. However, nickel patterns deposited on 1-butanethiol (BT), OT, and DT have traits similar to bare gold (excellent nucleation and adhesion) because Edes is positive of Emet. Substrates with SAMs also suppress adventitious chemistries that occur distant from the rastering microjet electrode, such as oxygen reduction, making samples more corrosion resistant and improving the overall patterning process that we call electrochemical printing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.