Abstract

Using differential capacity and chronocoulometry, we have studied the electrosorption of 4-(dimethylamino)pyridine (DMAP) on polycrystalline gold electrode surfaces. Our results indicate that the orientation of DMAP is highly dependent on the electrode potential and electrolyte pH. At pH values at or above the primary pKa, the adsorbed species is DMAP and orients vertically on the electrode surface via the lone pair of electrons on the pyridine ring's nitrogen atom. At very low pH values (<3) the adsorbed species is the protonated ion, DMAPH+, which can be desorbed from the electrode surface when the metal's surface charge density is made appreciably positive of the potential of zero charge. At intermediate electrolyte pH, either DMAP or DMAPH+ is adsorbed on the surface depending on the electrode's potential. At negative charge densities, DMAPH+ lies nearly flat on the gold electrode and the surface coverage is correspondingly low. When the electrode is positively charged, the adsorbate undergoes a phase transition to a vertical orientation and is simultaneously deprotonated to DMAP. Our results rationalize the stability of DMAP-ligated gold nanoparticles as a function of pH and demonstrate that the ligand's surface coverage is the principal factor in determining the stability of the colloidal system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call