Abstract

Commercially available quartz tuning forks (QTFs) can be transformed into self-sensing and actuating force sensors by micro-assembling a sharp tip on the apex of a tine. Mass of the tip is critical in determining the quality (Q)-factor of the sensor, therefore, fabrication of the lightweight nanotips is a precondition for high Q-factor QTF sensors. The work reports fabrication of very lightweight tungsten nanotips with a two-step electrochemical etching technique which can be used to develop high Q-factor QTF force sensor. First, a tungsten wire with protective coating at one end (1–2 mm) is etched with a trapezoidal waveform to form a lengthy (∼2–5 mm) and slender (diameter ∼10–40 μm) micro-needle. In the second step, sharp tip apex is fabricated with a direct current etching. High Q-factor (6600–8000) QTF force sensors have been developed with the fabricated nanotips. Atomic force microscope scanning of nano-grating and a triblock copolymer surface validates the scanning performance of the developed sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.