Abstract

Metal-organic frames (MOFs) have recently been used to support redox enzymes for highly sensitive and selective chemical sensors for small biomolecules such as oxygen (O2), hydrogen peroxide (H2O2), etc. However, most MOFs are insulative and their three-dimensional (3D) porous structures hinder the electron transfer pathway between the current collector and the redox enzyme molecules. In order to facilitate electron transfer, here we adopt two-dimensional (2D) metal-organic layers (MOLs) to support the HRP molecules in the detection of H2O2. The correlation between the current response and the H2O2 concentration presents a linear range from 7.5 μM to 1500 μM with a detection limit of 0.87 μM (S/N = 3). The sensitivity, reproducibility, and stability of the enzyme sensor are promoted due to the facilitated electron transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.