Abstract
The chemical and biological mechanisms of electrochemical elimination of Microcystis aeruginosa (M. aeruginosa) using boron-doped diamond (BDD) anode were comparatively explored in three different electrolytes (chloride, sulfate, and phosphate solutions). The most efficient elimination of M. aeruginosa was observed in chloride solution, which was attributed to the greatest total long-lived oxidants from the favorable formation of active chlorine. Moreover, the high permeability of active chlorine resulted in profound intracellular damages to chlorophyll-a, microcystin-LR (MC-LR), superoxide dismutase (SOD) enzyme, and DNA in the chloride system. The change of membrane permeability and degradation of the released MC-LR induced by active chlorine were further confirmed by the increase of extracellular MC-LR in the initial 5min and a complete decay in the subsequent 15min, while the change in morphology of algae cells was insignificant from SEM images. In sulfate and phosphate electrolytes, membrane damages were much more pronounced based on lipid peroxidation observation, although changes in cell morphology was found more significant in phosphate system. The higher concentrations of oxidants (·OH, O3, H2O2, S2O82-) generated in sulfate than in phosphate solution explained the greater efficiency of electrochemical elimination of M. aeruginosa in the sulfate electrolyte in terms of changes of cell density, OD680, chlorophyll-a, MC-LR, lipids, SOD enzyme, and DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.