Abstract
We develop a first-principles theoretical approach to doping in field-effect devices. The method allows for calculation of the electronic structure as well as complete structural relaxation in field-effect configuration using density-functional theory. We apply our approach to ionic-liquid-based field-effect doping of monolayer, bilayer, and trilayer ZrNCl and analyze in detail the structural changes induced by the electric field. We show that, contrary to what is assumed in previous experimental works, only one ZrNCl layer is electrochemically doped and that this induces large structural changes within the layer. Surprisingly, despite these structural and electronic changes, the density of states at the Fermi energy is independent of the doping. Our findings imply a substantial revision of the phase diagram of electrochemically doped ZrNCl and elucidate crucial differences with superconductivity in Li intercalated bulk ZrNCl.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.