Abstract

BRCA1 is the biomarker for the early diagnosis of breast cancer. Detection of BRCA1 has great significance for the genetic analysis, early diagnosis and clinical treatment of breast cancer. In this work, we developed a simple electrochemical DNA sensor based on a DNA tetrahedral-structured probe (TSP) and poly-adenine (polyA) mediated gold nanoparticles (AuNPs) for the sensitive detection of BRCA1. A thiol-modified TSP was used as the scaffold on the surface of the screen-printed AuNPs electrode. The capture DNA (TSP) and reporter DNA were hybridized to the target DNA (BRCA1), respectively, to form the typical sandwich system. The nanocomposites of reporter DNA (polyA at the 5′ end) combined with AuNPs were employed for signal amplification which can capture multiple enzymes by the specificity between biotin and streptavidin. Measurements were completed in the electrochemical workstation by cyclic voltammetry and amperometry and we obtained the low limit of detection of 0.1 fM with the linear range from 1 fM to 1 nM. High sensitivity and good specificity of the proposed electrochemical DNA sensor showed potential applications in clinical early diagnosis for breast cancer.

Highlights

  • Breast cancer is one of the most common malignancies and the major leading cause of cancer death among females in over 100 countries [1]

  • We developed a simple electrochemical DNA sensor based on tetrahedral-structured probe (TSP) and polyA

  • The principle of the proposed electrochemical DNA sensor for BRCA1 detection was based on the electrochemical signals of the redox reaction in the presence of the TMB

Read more

Summary

Introduction

Breast cancer is one of the most common malignancies and the major leading cause of cancer death among females in over 100 countries [1]. It is indispensable to diagnose breast cancer in the early stage. The breast cancer susceptibility gene (BRCA1) is a human tumor-suppressor gene that is involved in DNA damage repair [2]. The detection of BRCA1 is of great significance for the genetic analysis, early diagnosis and clinical treatment of breast cancer. The traditional detection methods of BRCA1 include single-strand conformation polymorphism assay (SSCP), high-performance liquid chromatography (HPLC) and DNA sequencing [5,6,7,8]. These methods have limitations in analytical time, cost and simplicity. It is necessary to develop a rapid, sensitive, low-cost and simple method for BRCA1 detection

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.