Abstract

In this paper a novel nanocomposite material prepared by Co3O4 nanorods (nano-Co3O4), graphene (GR) and chitosan (CTS) was fabricated and further modified on carbon ionic liquid electrode (CILE), which was used as the substrate electrode to construct a new electrochemical DNA biosensor. The single-stranded DNA (ssDNA) probe was immobilized on the CTS–Co3O4–GR/CILE surface by electrostatic attraction, which could hybridize with the target ssDNA sequence under the selected conditions. By using methylene blue (MB) as the electrochemical indicator, the hybridization reactions were monitored with the reduction peak current. By combining the biocompatibility of Co3O4 nanorods, excellent electron transfer ability and big surface of GR, good film-forming ability of CTS and the high conductivity of CILE, the amount of ssDNA adsorbed on the electrode surface was increased and the electrochemical response of MB was accelerated. Under the optimal conditions differential pulse voltammetric responses of MB were in linear with the specific target ssDNA sequence in the concentration range from 1.0×10−12 to 1.0×10−6M with the detection limit as 4.3×10−13M (3σ). Good discrimination ability to the one-base and three-base mismatched ssDNA sequences could be achieved and the polymerase chain reaction (PCR) amplification products of Staphylococcus aureus nuc gene sequence were detected with satisfactory results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.