Abstract

In this contribution we establish a proof of concept method for monitoring, quantifying and differentiating the extracellular phosphorylation of Human SHSY5Y undifferentiated neuronal cells and neuroblastoma cells by three prominent ectokinases PKA, PKC and Src. Herein it is demonstrated that a combination of different experimental techniques, including fluorescence microscopy, quartz crystal microscopy (QCM) and electrochemistry, can be used to detect extracellular phosphorylation levels of neuronal and neuroblastoma cells. Phosphorylation profiles of the three ectokinases, PKA, PKC and Src, were investigated using fluorescence microscopy and the number of phosphorylation sites per kinase was estimated using QCM. Finally, the phosphorylation of the extracellular membrane was determined using electrochemistry. Our results clearly demonstrate that the extracellular phosphorylation of neuronal cells differs significantly in terms of its phosphorylation profile from diseased neuroblastoma cells and the strength of surface electrochemical techniques in the differentiation process. We reveal that using electrochemistry, the percent compositions of neuronal and neuroblastoma cells can also be identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.