Abstract

Dabigatran etexilate, an oral prodrug, is often used to treat complications linked to thrombosis. Dabigatran (DAB, active form) does not need to be monitored. However, there are several conditions, such as reduced renal function, traumatic bleeding, emergency surgery, the need for thrombolytic therapy in acute stroke, or the requirement to use other forms of anticoagulation, where knowing the concentration of DAB in the blood is indispensable. Unfortunately, there are no convenient DAB-specific point-of-care tests available. To solve this problem, two disposable sensors were constructed and optimised in this work to detect the anticoagulant drug DAB using novel co-facing disposable electrodes, which allows a calibration-free quantitation of the electroactive mediator concentration. A trypsin-based sensor was evaluated. This sensor performed well in a 10 mM Tris buffer (pH 8.8) solution. However, trypsin was inhibited by alpha-1 antitrypsin when a plasma sample was introduced into the sensor. This problem was overcome by plasma filtration. This sensor showed a detection limit of 50.7 ng mL-1 DAB in plasma and a quantification range of 177-500 ng mL-1. A thrombin-based sensor was also constructed. This sensor performed well in ten-fold diluted plasma, overcoming the filtration problem observed with the trypsin-based sensor. This sensor showed a detection limit of 9.6 ng mL-1 DAB in plasma and a quantification range of 11.5-140 ng mL-1. Its extensive pH stability range, the possibility of working at physiological pH, low volume, low cost, and fast turnaround response (less than 20 s) make the calibration-free thrombin-based sensor a suitable point-of-care test to measure DAB concentration in the blood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.