Abstract

Hydrogels are of great importance for functionalizing sensors and microfluidics, and poly(ethylene glycol) dimethacrylate (PEG-DMA) is often used as a viscosifier for printable hydrogel precursor inks. In this study, 1-10 kDa PEG-DMA based hydrogels were characterized by gravimetric and electrochemical methods to investigate the diffusivity of small molecules and proteins. Swelling ratios (SRs) of 14.43-9.24, as well as mesh sizes ξ of 3.58-6.91 nm were calculated, and it was found that the SR correlates with the molar concentration of PEG-DMA in the ink (MCI) (SR = 0.1127 × MCI + 8.3256, R2 = 0.9692) and ξ correlates with the molecular weight (Mw) (ξ = 0.3382 × Mw + 3.638, R2 = 0.9451). To investigate the sensing properties, methylene blue (MB) and MB-conjugated proteins were measured on electrochemical sensors with and without hydrogel coating. It was found that on sensors with 10 kDa PEG-DMA hydrogel modification, the DPV peak currents were reduced to 92 % for MB, 73 % for MB-BSA, and 23 % for MB-IgG. To investigate the diffusion properties of MB(-conjugates) in hydrogels with 1-10 kDa PEG-DMA, diffusivity was calculated from the current equation. It was found that diffusivity increases with increasing ξ. Finally, the release of MB-BSA was detected after drying the MB-BSA-containing hydrogel, which is a promising result for the development of hydrogel-based reagent reservoirs for biosensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.