Abstract

An environmental friendly electrochemical detoxification and recovery process is developed for the spent SCR catalysts disposal under alkaline condition. It is revealed that the spent V2O5-WO3/TiO2 catalyst is severely aggregated and poisoned by arsenic compounds. In this study, the efficient removal of arsenic is achieved by the electrochemical advanced oxidation processes (EAOPs) at surface-modified carbon felt cathode, where the HO2− and highly oxidative OH are in-situ generated from two-electron ORR and electro-Fenton-like reaction, respectively. The mechanism of electrochemical arsenic extraction is systematically illustrated by employing the ESR measurements, and vanadium species induced electro-Fenton-like reaction is proposed. After electro-oxidative dissolution, the crystal structure and original composition of the catalyst support (TiO2 and WO3) are well maintained for recycle or subsequently re-fabrication process. After dipping active component on the detoxified catalyst, the regenerated catalyst shows a comparable SCR catalytic activity with the fresh sample. The present electrochemical strategy provides a promising approach for the spent catalysts utilization and further understanding for the in-situ generated reactive oxygen species in alkaline media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call