Abstract

Square-wave adsorptive stripping voltammetry technique was used to determine rosiglitazone (ROS) on the hanging mercury dropping electrode (HMDE) surface, in Britton Robinson buffer, pH=5. The voltammetric cathodic peak was observed at −1520mV vs. Ag/AgCl reference electrode. The voltammetric peak response was characterized with respect to pH, supporting electrolyte, accumulation potential, preconcentration time, scan rate, frequency, pulse amplitude, surface area of the working electrode and the convection rate. Under optimal conditions, the voltammetric current is proportional to the concentration of ROS over the concentration range of 5×10−8–8×10−7moll−1 (r=0.9899) with a detection limit of 3.2×10−11moll−1 using 120s accumulation time. The developed SW-AdSV procedure showed a good reproducibility, the relative standard deviation RSD% (n=10) at a concentration level of 5×10−7moll−1 was 0.33%, whereas the accuracy was 101%±1.0. The proposed method was successfully applied to assay the drug in the human urine and plasma samples with mean recoveries of 90±0.71% and 86±1.0%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call