Abstract

Cyclic voltammetry of ferrocene at glassy carbon electrode in acetonitrile (ACN), ο-nitrophenyloctylether (NPOE) and ACN-NPOE mixture with 0.2 M tetrabutylammonium tetrafluoroborate (TBABF4) were investigated. Both cathodic and anodic peak current were diffusion-controlled at any NPOE fraction. However, the peak current was decreased with the increasing NPOE fraction. In addition, the peak potential difference increased not only with an increase in the NPOE fraction but also in the scan rate, while the values of half-wave potential did not vary largely with the fraction or the scan rate. This indicated that the variation of peak current and peak potential should be due to the variation of the solution resistance. In order to demonstrate this assumption, the conductance of TBABF4 in ACN, NPOE, and ACN-NPOE mixture were determined by AC impedance. All of the solution conductances were inversely linear to the viscosity of the solvent, which was increased with the fraction of NPOE. The calculated ionization constant of TBABF4 in ACN was 2.8 times of that in NPOE. TBABF4 in ACN can work as a supporting electrolyte, whereas they work partly in NPOE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call