Abstract

ABSTRACTA novel platinum–palladium nanoparticle-decorated carbon nanofiber nanocomposite was greenly prepared by attaching the nanoparticles to the nanofibers for the preparation of glucose biosensors. The platinum–palladium bimetallic nanoparticle-modified carbon nanofiber nanocomposite was characterized by transmission electron microscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The glucose biosensor was constructed by immobilizing glucose oxidase on the nanocomposite-modified glassy carbon electrode by cross-linking with glutaraldehyde. The resulting biosensor exhibited a good response to glucose with a wide linear range from 2.5 × 10−6 to 1.3 × 10−2 M with a high sensitivity of 154.6 µA mM−1 cm−2 and a detection limit of 0.7 µM. This biosensor was shown to offer good accuracy, precision, and reproducibility. The determination of glucose in human serum by the modified electrode was in good agreement with standard values. The nanocomposite electrode offers a suitable platform for the determination of glucose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.