Abstract

A simple and highly sensitive electroanalytical method for the determination of bisphenol F (BPF) was developed, which was carried out on multi-walled carbon nanotubes-COOH (MWCNT-COOH) modified glassy carbon electrode (GCE) using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results showed that MWCNT-COOH remarkably enhanced the oxidation of BPF, which improved the anodic peak current of BPF significantly. The mechanism was oxidation of BPF lose electrons on the electrode surface via adsorption-controlled process, electrode reaction is the two electrons/two protons process. Under the optimised conditions, the oxidation peak current was proportional to BPF concentration the range from 0.12 to 6.01μgmL−1. The detection limit was 0.11μgmL−1 (S/N=3), and the relative standard deviation (R.S.D.) was 3.5% (n=9). Moreover, the MWCNT-COOH/GCE electrode showed good reproducibility, stability and anti-interference. Therefore, the proposed method was successfully applied to determine BPF in food packing and the results were satisfactory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call