Abstract

We have successfully prepared the titanium dioxide (TiO2) nanoparticles (NPs) and sulfur-incorporated graphitic carbon nitride (S-GCN)-modified carbon paste electrode (CPE). The CPEs modified with TiO2 NPs and S-GCN were employed for detecting and quantifying the skeletal muscle relaxant cyclobenzaprine hydrochloride (CBP) using cyclic voltammetry and square wave voltammetry (SWV) techniques. Optimal electrochemical conditions were indicated by the pH study results, with the highest peak current observed at a physiological pH of 7.4. The electrochemical process was determined to involve an equivalent number of protons (H+) and electrons (e-). The concentration variation of CBP (ranging from 0.06 to 10 × 10-7 mol L-1) was explored using SWV. The limits of detection and quantification were determined as 6.4 × 10-9 and 2.1 × 10-8 M, respectively. The proposed electrode configuration was applied to analyze real samples, including water, biomedical, and pharmaceutical specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.