Abstract

Pyrrole was electro-polymerized on the surface of the glassy carbon electrode (GCE) coated with a thin film of carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG) or graphite nanopowder (GNP). Morphology, thickness, stability and loading of the polypyrrole (PPY) film were significantly affected by the structure and morphology of the sub-layer of carbon nanomaterials. Electrochemical oxidation of atorvastatin (ATOR) was investigated. Under the optimized conditions, a significant increase in the peak current (compared to other modified electrodes and bare GCE) and a negative shift in the peak potential (compared to bare GCE) were observed on the surface of the CNTs/PPY modified electrode. The electrode was able to completely resolve the voltammetric response of ATOR from potentially interfering species, e.g. ascorbic acid (AA), uric acid (UA) and dopamine (DA) which are present in many biological systems. Two linear dynamic ranges of 0.005–0.1μM and 0.1–1μM with a detection limit of 1.5nM and a sensitivity of 267.68 (±1.26) μA/μM were obtained for ATOR from linear sweep voltammetry (LSV) measurements. The modified electrode with high sensitivity, stability and good reproducibility showed promising results for determination of the ATOR concentration in pharmaceutical and clinical preparations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.