Abstract

A poly(L-cysteine) thin film was prepared onto electrode surface via electropolymerization. In pH 7.0 phosphate buffer, L-cysteine was oxidized during the cyclic potential sweep between −0.60 and 2.00 V, forming a thin film at the glassy carbon electrode (GCE) surface. The electrochemical behaviors of ascorbic acid at the bare GCE and the poly(L-cysteine) film-coated GCE were investigated. The oxidation peak potential of ascorbic acid shifts to more negative potential at the poly(L-cysteine) film-modified GCE. Moreover, the oxidation peak current significantly increases at the poly(L-cysteine) film-modified GCE. These phenomena indicate that poly(L-cysteine) film shows highly-efficient catalytic activity to the oxidation of ascorbic acid. Based on this, a sensitive and simple electrochemical method was proposed for the determination of ascorbic acid. The oxidation peak current of ascorbic acid is proportional to its concentration over the range from 1.0 × 10−6 to 5.0 × 10−4 mol l−1. The limit of detection is evaluated to be 4.0 × 10−7 mol l−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call