Abstract

A metal organic framework (MOF) of the type copper(II)-1,3,5-benzenetricarboxylic acid (Cu-BTC) was electrodeposited on electroreduced graphene oxide (ERGO) placed on a glassy carbon electrode (GCE). The modified GCE was used for highly sensitive electrochemical determination of 2,4,6-trinitrophenol (TNP). The fabrication process of the modified electrode was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Differential pulse voltammetry (DPV) demonstrates that the Cu-BTC/ERGO/GCE gives stronger signals for TNP reduction than Cu-BTC/GCE or ERGO/GCE alone. DPV also shows TNP to exhibit three reduction peaks, the first at a potential of -0.42V (vs. SCE). This potential was selected because the other three similarly-structured compounds (2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol) do not give a signal at this potential. Response is linear in the 0.2 to 10μM TNP concentration range, with a 0.1μM detection limit (at S/N= 3) and a 15.98μA∙μM-1∙cm-2 sensitivity under optimal conditions. The applicability of the sensor was evaluated by detecting TNP in spiked tap water and lake water samples. Recoveries ranged between 95 and 101%. Graphical abstract Schematic presentation of an electrochemical sensor that was fabricated by electrodeposition of the metal-organic framework (MOF) of copper(II)-1,3,5-benzenetricarboxylic acid (Cu-BTC) onto the surface of electroreduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). It was applied to sensitive and selective detection of 2,4,6-trinitrophenol (TNP).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.