Abstract
Electrochemical techniques are widely used in microfluidic and nanofluidic devices because they are suitable for miniaturization, have better sensitivity compared to optical detection techniques, and their components can be reliably microfabricated. In addition to the detection and quantification of analytes, electrochemical techniques can be used to monitor processes such as biological cell death and protein/DNA separations/purifications. Such techniques are combined with micro- and nanofluidic devices with point-of-care (POC) applications in mind, where cost, footprint, ease of use, and independence from peripheral equipment are critical for a viable design. A large variety of electrode materials and device configurations have been employed to meet these requirements. This review introduces the reader to the major electrochemical techniques, materials, and fabrication methods for working and reference electrodes, and to surface modifications of electrodes to facilitate electrochemical measurements, in the context of micro- and nanofluidic devices. The continuing development of these techniques holds promise for the next-generation lab-on-a-chip devices, which can realize the goals of this technology such as POC clinical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.