Abstract
A commercial xanthine oxidase (XOD) was immobilized covalently onto carboxylated multiwalled carbon nanotubes (c-MWCNT) and polyaniline (PANI) composite film electrodeposited on the surface of a Pt electrode, using N-ethyl-N′-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry. A xanthine biosensor was fabricated using XOD/c-MWCNT/PANI/Pt electrode as a working electrode, Ag/AgCl (3 M KCl) as standard electrode and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrophotometry and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response within 4 s at pH 7.0 and 35 °C, when polarized at 0.4 V. The optimized xanthine biosensor showed linear response range of 0.6–58 μM, with a detection limit of 0.6 μM (S/N = 3), and a correlation coefficient of 0.98. The biosensor was applied to determine xanthine in fish meat. The biosensor lost 50% of its initial activity after its 200 uses over a period of 100 days.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.