Abstract

Developing rapid, sensitive, and facile nucleic acid detection technologies is of paramount importance for preventing and controlling infectious diseases. Benefiting from the advantages such as rapid response, low cost, and simple operation, electrochemical impedance spectroscopy holds great promise for point-of-care nucleic acid detection. However, the sensitivity of electrochemical impedance spectroscopy for low molecular weight nucleic acids testing is still limited. This work presents a DNA nanolock-based porous electrode to improve the sensitivity of electrochemical impedance spectroscopy. Once the target nucleic acids are recognized by the DNA probes, the pore-attached DNA nanolock caused remarkable impedance amplification by blocking the nanopores. Taking SARS-CoV-2 nucleic acid as a model analyte, the detection limit of the porous electrode was as low as 0.03 fM for both SARS-CoV-2 RNA and DNA. The integration of a porous electrode with a wireless communicating unit generates a portable detection device that could be applied to direct SARS-CoV-2 nucleic acid testing in saliva samples. The portable device could effectively distinguish the COVID-19 positive and negative samples, showing a sensitivity of 100% and a specificity of 93%. Owing to its rapid, ultrasensitive, specific, and portable features, the as-designed DNA nanolock and porous electrode-based portable device holds great promise as a point-of-care platform for real-time screening of COVID-19 and other epidemics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.