Abstract

AbstractThe development of sensitive, fast and efficient nanointerfaces as platforms for electrochemical sensing devices for the detection of environmental pollutant including antibiotic pollutant has become a matter of priority for public safety. We report herein a benzene sourced graphene‐gold nanoparticle sensor for the detection of tetracycline using chronoamperometry. Structural analysis using Raman Spectroscopy and x‐ray diffraction spectroscopy (XRD) confirmed the presense of few‐layer graphene. Atomic force (AFM) and scanning electron microscopy (SEM) characterization results confirmed the synthesized graphene to be thin flat sheet‐like material with wide surface area and a thickness of less than 1 nm. Cyclic voltammetry characterization of the fabricated modified electrodes showed diffusion controlled process for the oxidation of tetracycline. The modified electrode exhibited a fast response to the detection of tetracycline and a sensitivity of 1,86×102 μA/mM/cm2.The theoretical detection limit (S/N=3) was 1,60×10−1 μM and the linear dynamic range was from 2,90×101 μM to 1.53×103 μM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.