Abstract

Development of an electrochemical DNA biosensor, using a gold electrode modified with a self-assembled monolayer composed of a peptide nucleic acid (PNA) probe and 6-mercapto-1-hexanol, is described. The sensor relies on covalent attachment of the14-mer PNA probe related to the hepatitis C virus genotype 3a (pHCV3a) core/E1 region on the electrode. Covalently self-assembled PNA could selectively hybridize with a complementary sequence in solution to form double-stranded PNA-DNA on the surface. The increase of peak current of methylene blue (MB), upon hybridization of the self-assembled probe with the target DNA in the solution, was observed and used to detect the target DNA sequence. Some hybridization experiments with noncomplementary oligonucleotides were carried out to assess whether the suggested DNA sensor responds selectively to the target. Diagnostic performance of the biosensor is described and the detection limit was found to be 5.7 × 10 −11 M with a relative standard deviation of 1.4% in phosphate buffer solution, pH 7.0. This sensor exhibits high reproducibility and could be used for detection of the target DNA for seven times after the regeneration process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.