Abstract

A sensitive electrochemical DNA biosensor was prepared based on mercaptoacetic acid (MAA)/gold nanoparticles (AuNPs) modified electrode. Probe DNA (NH2-DNA) was covalently linked to the carboxyl group of MAA in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxyl-succinimide (NHS). Scanning electron microscopy (SEM) and electrochemical impedance spectra (EIS) were used to investigate the film assembly process. The DNA hybridization events were monitored by differential pulse voltammetry (DPV), and adriamycin was used as the electrochemical indicator. Also the factors influencing the performance of the DNA hybridization were investigated in detail. Under the optimal conditions, the signal was linearly changed with target DNA concentration increased from 5.0 × 10−13to 1.0 × 10−9 M and had a detection limit of 1.7 × 10−13 M (signal/noise ratio of 3). In addition, the DNA biosensor showed good reproducibility and stability during DNA assay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.