Abstract

A highly sensitive electrochemical sensor using a calix[6]arene/bismuth ferrite/multiwall carbon nanotube-modified fluorine-doped tin oxide electrode (CA6/BFO/MWCNTs/FTO) was fabricated for the detection of methyl parathion. The MWCNTs, BFO, and CA6 were consecutively cast onto the FTO electrode surface to enhance the surface area, electron transfer, and selectivity of sensors. The electrochemical behavior of CA6/BFO/MWCNTs/FTO was studied via cyclic voltammetry and electrochemical impedance spectroscopy. MP was detected via cyclic voltammetry in a phosphate buffer solution at pH 7.0. The working principle of the sensor involves a linear decrease in the anodic peak current of BFO with increasing MP concentration. The linear working ranges are 0.005-0.05nM and 0.07-1.5nM. The CA6/BFO/MWCNTs/FTO sensor provides a low detection limit (S/N = 3) of 5pM and a high electrochemical sensitivity of 1.23 A μM-1cm-2. The fabricated sensor was successfully applied to assess the presence and amount of MP in vegetables and fruits (recoveries of 82.0-106.8%), with results comparable to high-performance liquid chromatography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.