Abstract

A glassy carbon electrode was modified with dsDNA and a nanocomposite composed of multi-walled carbon nanotubes and chitosan (MWNT-chit). The electrode was applied to the electrochemical detection of DNA damage as induced by in situ generated bisphenol A (BPA) radicals through electro-oxidation. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The results indicate that MWNT-chit nanocomposite represents a viable platform for the immobilization of DNA that effectively promotes electron transfer between DNA and the electrode. The mode of interaction between DNA and BPA was investigated by differential pulse voltammetry and UV-vis spectrophotometry, indicating that the dominant interaction is intercalation. In order to explore the mechanism of damage caused by BPA radicals, the electro-oxidation of BPA at the modified glass electrode was investigated. Based on the signal for guanine without any other external indicator, DNA damage was investigated through the electro-oxidation of BPA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.