Abstract

Adherent cells, cell sheets, and spheroids were harvested noninvasively from a culture surface by means of electrochemical desorption of a self-assembled monolayer (SAM) of alkanethiol. The SAM surface was made adhesive by the covalent bonding of Arg-Gly-Asp (RGD)-peptides to the alkanethiol molecules. The application of a negative electrical potential caused the reductive desorption of the SAM, resulting in the detachment of the cells. Using this approach greater than 90% of adherent cells detached within 5 min. Furthermore, this approach was used to obtain two-dimensional (2D) cell sheets. The detached cell sheets consisted of viable cells, which could be easily attached to other cell sheets in succession to form a multilayered cell sheet. Moreover, spheroids of hepatocytes of a uniform diameter were formed in an array of cylindrical cavities at a density of 280 spheroids/cm 2 and were harvested by applying a negative electrical potential. This cell manipulation technology could potentially be a useful tool for the fabrication and assembly of building blocks such as cell sheets and spheroids for regenerative medicine and tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call