Abstract

Zinc oxide (ZnO) nanorod arrays for inorganic/organic hybrid solar cells were electrochemically deposited on indium tin oxide (ITO) substrates with a rotating disk electrode setup. The addition of a ZnO seed layer on the ITO prior to electrochemical deposition improved the morphology of the nanorods, resulting in nanorods with smaller and homogenous diameters as well as a higher degree of vertical orientation on to the substrate. The ZnO films deposited on the seeded ITO substrates had higher optical transmittance and lower concentration of defects. Chronoamperometric transient curves show that nucleation and coalescence occurred later for bare ITO substrates, indicating lower densities of initial nuclei, resulting in the growth of nanorods with larger diameters. The solar cell characteristics of the devices fabricated from the seeded ITO substrates were better. The seed layer also acts as a hole-blocking layer, preventing the direct contact between the hole-transporting polymer material and the ITO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call