Abstract

In this study, a novel electrifying mode (divided power-on and power-off stage) was applied in the system of BDD activate sulfate to degrade tetracycline hydrochloride (TCH). The BDD electrode could activate sulfate and H2O to generate sulfate radicals (SO4•-) and hydroxyl radicals (•OH) to remove TCH, and SO4•- could dimerize to form S2O82−. Then, the S2O82− was activated by heat and quinones to generate SO4•- for the continuous degradation of TCH during the power-off stage. In addition, the intermittent time has a significant effect on the degradation of TCH. Factors, affecting the accumulation of S2O82−, were analyzed using a full factorial design, and the accumulation of S2O82− could reach 16.2 mM in 120 min. The results of electron spin resonance and radical quenching test showed that SO4•-, •OH, direct electron transfer (DET), and non-radical in the system could effectively degrade TCH, and SO4•- was dominated. The intermediate products of TCH were analyzed by HPLC-QTOF-MS/MS, and the TCH mainly underwent hydroxylation, demethylation and ring opening reactions to form small molecules, and finally mineralized. The results of the feasibility analysis revealed that some intermediates have high toxicity, but the system could improve the toxicity. The results of energy consumption indicated that the intermittent electrifying mode could make full use of the persulfate generated during the power-on stage and reduce about 30% energy consumption. In conclusion, this work demonstrated that it was economically feasible to degrade TCH in wastewater by activating sulfate with BDD electrodes with an intermittent electrifying mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.