Abstract
2,4-Dinitrotoluene (2,4-DNT) has been found to be an important petrochemical compound, which is primarily employed for the synthesis of tolylene diisocyanate and the production of dyes, rubber, and explosives. Since this compound has high toxicity and carcinogenicity, the cautions should be considered when wastewater contaminated with DNTs and their derivatives is released into the environment. Thus, the object of the present study was the investigation of the 2,4-DNT degradation efficiency using the three-dimensional electrocatalytic reactor (3DER) with two different types of particle electrodes (granular activated carbon (GAC) and magnetized clinoptilolite zeolite (MCZ)@Fe 3 O 4 nanoparticles)). Preparation of the graphite (G)/β-PbO 2 anode was done by electrochemically depositing PbO 2 layers on graphite sheets. The prepared graphite sheet and a stainless-steel 316 sheet (with the same dimensions) were employed as the anode and the cathode, respectively. Field emission scanning electron microscopy (FESEM), X-ray diffraction analysis (XRD), and energy-dispersive X-ray spectroscopy mapping (EDS-mapping) confirmed the successful preparation of G/β-PbO 2 anode. The surface morphology, chemical composition of MCZ@Fe 3 O 4 nanoparticles as a particle electrode were determined by scanning electron microscope (SEM) and XRD pattern. To determine the optimal conditions, we employed the response surface methodology-based central composite design (RSM-CCD) method. According to observed results, higher efficiency of 3DER was obtained by increasing the reaction time and current density and decreasing pH and the pollutant concentration. Studies highlighted the initial 2,4-DNT concentration of 23.5 mg/L, current density 4.8 mA/cm 2 , pH of 4.1, electrolysis time of 50 min, particle electrodes dose = 6 g/250 cc as optimum values of parameters. The 2,4-DNT degradation efficiencies using GAC and MCZ@Fe 3 O 4 nanoparticles as particle electrodes under mentioned optimal conditions were 98.6% and 96.5%, respectively. Moreover, the chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiencies were 88.5% and 80.9% at the end of 50 min, respectively. Furthermore, results were indicative of an enhancement in average oxidation state (AOS) (from 1.27 to 2.36) and carbon oxidation state (COS) (from 1.27 to 3.68) in the 3DER process and a reduction in the COD/TOC ratio (from 1.81 to 1.09); these signposts the effectiveness of 3DER system for providing the biodegradability of 2,4-DNT. Considering the results, the 3DER could lead to suitable results for the degradation of wastewater containing DNT and resistant contaminants as pretreatment and has remarkable applicability for enhancing the biodegradability of wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.