Abstract

The traditional synthesis for bimetallic-based electrocatalysts is challengeable for fine composition and elemental distribution because of the uncontrollable growth speed of nanostructures utilizing metal salt precursors. Herein, a unique electrochemical corrosion engineering strategy is developed via electrochemically transforming metal solid substrates (iron foil and nickel foam) into a highly active Ni-Fe oxide film for oxygen evolution, rather than directly utilizing metal ion precursors. This synthesis involves electrochemical corrosion of a Fe foil in an aqueous electrolyte along with electrochemical passivation of Ni foam (NF). The released trace Fe ions gradually incorporate into passivated NF surfaces to construct Ni-Fe oxide film and crucially improve composition distribution in the catalyst film. As a result, the resulted film with an ultralow mass loading (0.22 mg cm-2) delivers large current densities of 500 mA cm-2 at overpotential of only 270 mV in 6.0 M KOH at 60 °C, outperforming many reported NiFe catalysts requiring much higher mass loadings. More interestingly, the as-prepared catalyst almost reaches the standard (500 mA cm-2 within the overpotential of 300 mV) in commercial water electrolysis with long-term stability for at least 10 h. This work may provide a unique synthesis strategy for nonprecious transition-metal catalysts for desirable water splitting and can be expanded to many other electrocatalysis systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.