Abstract

An electrochemical (EC) method has been successfully applied to regulate the optical properties of nanocrystals, such as reducing their gain threshold by EC doping and enhancing their photoluminescence intensity by EC filling of trap states. However, the processes of EC doping and filling are rarely reported simultaneously in a single study, hindering the understanding of their underlying interactions. Here, we report the spectroelectrochemical (SEC) studies of quasi-two-dimensional nanoplatelets (NPLs), intending to clarify the above issues. EC doping is successfully achieved in CdSe/CdZnS core/shell NPLs, with red-shifted photoluminescence and a reversal of the emission intensity trend. The injection of extra electrons (holes) into the conduction (valence) band edges needs high bias voltages, while the passivation/activation process of trap states with the shift of Fermi level starts at lower EC potentials. Then, we explore the role of excitation light conditions in these processes, different from existing SEC research studies. Interestingly, increasing the laser power density can hinder EC electron injection, whereas decreasing the excitation energy evades the passivation process of trap states. Moreover, we demonstrate that EC control strategies can be used to realize color display and anti-counterfeiting applications via simultaneously tailoring the photoluminescence intensity of red- and green-emitting NPLs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call