Abstract

The slow redox rate of hydrogen peroxide (H2O2) in neutral environments makes the H2O2 sensor inadequate for the detection of low levels of signalling molecules. The aim of this study is to fabricate a flexible sensing electrode by hydrothermally loading micro-nanometer Ni and Co(OH)2 on carbon cloth (CC) and electrochemically depositing poly(3,4-ethylenedioxythiophene) (PEDOT) on the surface of the electrode. The sensor presented high sensitivity (10.43 mA mM-1 cm-2), a wide detection range (0.033-120.848 mM), a low detection limit (0.92 nM), high stability, and excellent anti-interference performance in neutral solutions. Ni-Co(OH)2 provides abundant active sites while CC solves their agglomeration phenomenon and conductivity. The PEDOT film offers heightened conductivity, hydrophilicity, interfacial stability, and an electrochemically active surface area (ECSA). The side area of the chrysanthemum petal like PEDOT is 39 ± 7 times the bottom area, and PEDOT increases the ECSA of the composite to six times that of CC. Electrochemical precise control of PEDOT morphology to improve sensor performance provides a new strategy for the application of PEDOT in sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.