Abstract

In this study, a molten salt co-reduction method was proposed for preparing Y–Al intermediate alloys and the electrochemical co-reduction behaviors of Y(III) and Al(III) and the reaction mechanism of intermetallic compound formation were investigated by transient electrochemical techniques. The results show that the reduction of Y(III) at the Mo electrode is a reversible electrochemical process with a single-step transfer of three electrons, which is controlled by the mass transfer rate. The diffusion coefficient of Y(III) in the fluoride salt at a temperature of 1323 K is 5.0238 × 10−3 cm2/s. Moreover, the thermodynamic properties associated with the formation of Y–Al intermetallic compounds were estimated using a steady-state electrochemical method. Y–Al intermediate alloy containing 92 wt% yttrium was prepared by constant current electrolysis at 1323 K in the LiF–YF3–AlF3–Y2O3 (6 wt%)–Al2O3 (1 wt%) system at a cathodic current density of 8 A/cm2 for 2 h. The Y–Al intermediate alloy is mainly composed of α-Y2Al and Y phases. The development and application of this innovative technology have solved major technical problems, such as a long production process, high energy consumption, and serious segregation of alloy elements at this stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call