Abstract
The use of hierarchical assemblies constituted from macroporous structures (e.g., reticulated vitreous carbon, RVC) where the internal pore area is covered with closely spaced nanostructures (e.g., carbon nanotubes, CNT) is proposed for substantially enhancing the energy density of electrochemical capacitors, while maintaining large charge/discharge rates. While the macroscale pores enable storage of substantial electrolyte volumes that would contribute through redox reactions to the energy density, the closely spaced nanostructures provide a large geometric area and capacitance in addition to enabling rate independent Faradaic charge storage via thin layer electrochemistry (TLE). A fifty fold increase in the double layer capacitance, in addition to increased Faradaic charge density – with potential for orders of magnitude improvement, was observed for the RVC-CNT electrodes, in comparison to the bare RVC foam electrode. It was seen that the hierarchical assembly enables the contribution from ∼94% of the net volume of the wetted RVC-CNT electrode for active Faradaic charge storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.