Abstract
Flexible polyurethane substrates were coated with Ag:TiN thin films (N/Ti atomic ratio=0.7; 10at.% Ag), with different column inclinations (α=0°, 40° and 80°) and architectures (columnar, zigzag with 2 and 4 periods), using the Glancing Angle Deposition (GLAD) technique. The coatings were characterized in order to assess the best thin film architecture to suit the bio-potential electrode applications. An abrupt increase of porosity of the samples was perceivable with increasing α angles (particularly from 40° to 80°). Hence, the sputtered films could be divided into dense (Ag:TiN 0° and Ag:TiN 40°) and porous (Ag:TiN 80°, Ag:TiN 80° 2Z and Ag:TiN 80° 4Z) samples. The electrochemical behaviour of the samples was consistently linked to the porosity differences, which was accompanied by an increase of the surface Ag content. Furthermore, the porous samples exhibited lower impedances (~104Ωcm2 at 2MHz), as well as electrochemical noise and drift rate values similar to those of the commercial Ag/AgCl electrodes. Hence, the porous Ag:TiN 80°, Ag:TiN 80° 2Z and Ag:TiN 80° 4Z porous Ag:TiN GLAD coatings seem to be the most promising architectures for the envisaged bio-potential electrode applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.