Abstract

Bioanodes were formed with electrodes made of carbon felt and equipped with a titanium electrical collector, as commonly used in microbial fuel cells. Electrochemical impedance spectroscopy (EIS) performed on the abiotic electrode system evidenced two time constants, one corresponding to the “collector/carbon felt” contact, the other to the “carbon felt/solution” interface. Such a two time constant system was characteristics of the two-material electrode, independent of biofilm presence. EIS was then performed during the bioanode formation around the constant applied potential of 0.1V/SCE. The equivalent electrical model was similar to that of the abiotic system. Due to the high salinity of the electrolyte (45g·L−1 NaCl) the electrolyte resistance was always very low. The bioanode development induced kinetic heterogeneities that were taken into account by replacing the pure capacitance of the abiotic system by a constant phase element for the “carbon felt/solution” interface. The current increase from 0 to 20.6A·m−2 was correlated to the considerable decrease of the charge transfer resistance of the “carbon felt/solution” interface from 2.4 104 to 92Ω·cm2. Finally, EIS implemented at 0.4V/SCE showed that the limitation observed at high potential values was not related to mass transfer but to a biofilm-linked kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.