Abstract

This report describes measurement of retention of electroactive ferricyanide (Fe(CN)63-) entrapped within structurally stable photopolymerized vesicles composed of diacetylenic lipid 1-palmitoyl-2-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (PC8,9PC). Vesicle size, shape, and dispersity were assessed by dynamic laser light scattering and rates of permeation of ferricyanide measured by cyclic voltammetry. Gold disk electrodes modified with 6-mercaptohexanol or 2-mercaptoethanamine (cysteamine) respond with quantitative sensitivity to extravesicular ferricyanide over a concentration range of 10 μM to 0.1 M, are insensitive to entrapped ferricyanide even at high applied oxidative potentials, and resist fouling by vesicles, vesicle fragments, or vesicle-rupturing surfactant. Quantitative changes in ferricyanide peak current over time enabled straightforward determination of ferricyanide permeation rate constants as a function of pH and temperature. At 25 °C, ferricyanide permeability increased from 1....

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call