Abstract
AbstractSodium‐ion batteries (SIBs) represent a potential alternative to lithium‐ion batteries in large‐scale energy storage applications. To improve the sustainability of SIBs, the utilization of anode carbonaceous materials produced from biomass and the selection of a bio‐based binder allowing an aqueous electrode processing are fundamental. Herein, corncobs are used as raw material for the preparation of hard carbon and it is also used as cellulose sources for the synthesis of carboxymethyl cellulose (CMC) binder. The corncob‐derived electrodes deliver a high discharge capacity of around 264 mAhg−1 at 1 C (300 mAg−1), with promising capacity retention (84 % after 100 cycles) and good rate capability. Additionally, this work expands the fundamental insight of the sodium storage behavior of Hard Carbons through an electrochemical approach, suggesting that the reaction mechanism is controlled by capacitive process in the sloping voltage region, while the diffusion‐controlled intercalation is the predominant process in the low‐voltage plateau.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.